Module 15 | Project Submission and

Documentation Report

CEN3031 Group 12 - Bag Boys

BreadBasket

rFIND THE BEST GROCERY DEALS IN YOUR AREA
-

Project Title: BreadBasket

Github URL: https://qgithub.com/JacksonSchreiber/BreadBasket

Team Members: Ahmed Eltabbakh, Kyle Miller, Jackson Schreiber,
Yaroslav Voryk


https://github.com/JacksonSchreiber/BreadBasket

Table of Contents

L= 1 o = o 0o s 1= 41 1
Section 1 | Project DescCription.........cccccciiciiinnnensnseessessceeccce e s s e s s e se s e s e e s s e e e nesnenennes 2
{ I o o= Tor I L= 4o 14 ] o T 2

@) OVEIVIBW. ...ttt ettt e oot e e e ekt e e e e e e a b et e e e bb e e e e e nb e e e e e enbb e e e e anneeas 2

b) Challenge Statement SOIULION. ..........oooiiiiii e 2

c) Feature Functionality Highlight 1 | Home Page..........cccoooiiiiiiiiiiiiie e 2

d) Feature Functionality Highlight 2 | Login/Registration..............ccccoiiiiiiiiiiiiiiiiiiiiinns 2

e) Feature Functionality Highlight 3 | Price Comparison............cccccuuvvvviviviiieeieeeeeeeeeeeeeeeee. 3

f) Feature Functionality Highlight 4 | Shopping Cart............cccooiiiiiiiiie e 3

g) Feature Functionality Highlight 5 | Smart Shopping Assistant "Bready"....................... 3

h) Feature Functionality Highlight 6 | Account Settings...........occuviiiiiiiiii 3

i) Feature Functionality Highlight 7 | Admin Features..........ccccccvvviiiiii 4

1) ArChiteCtural Pattern............uuiiiiiiiiiieeeeeeeeeeeeeee et 4

K) System Context MOEL..........ooooi i e e 4

[) USE CaSE MOMEL......coiiiiiiieeie e a e e 4
Section 2 | Code Management............occcieemmiiiiinssrrr s s 6
2. C0ode ManagemeNnt.........cooiiiiiiii ot —————————————————a———a————aees 6

a) Code ManagemENt.......coooiiiiiiii 6

D) TEST PIaN....co et 6

C) SHAtiC COAE ANAIYSIS. ....eiiiiiiiiitee et 6
Section 3 | Technical Details.........ccccciiiiiiniiiiii 8
3. Technical Details..........cooiiiiiii ittt e e e e e ee e e 8

a) Technical Details 1 | Backend...........oooooiiii 8

b) Technical Details 2 | Frontend............oooii i 8

C) Installation INSTIUCHIONS. ... 8

d) Login and Access Credentials / APl KEYS.......cooiiiiiiiiiiieiiiiiieeeee e 9
Section 4 | Risk Management...........ee s s e e e e e e e e e eees 1"
4. Risk Management and Software Quality Attributes..........ccccooviiiiii i 11

A) RISK ManNagemENt......ccooiiiiiiiiie e 11

b) Software Quality ARFIDULES............oeiiiiii e 11
References & Additional DOCS..........ccccccrumummmmmmmnneeneceecee s s e e e s e e e s e e e e e e e ererreerneeeeeeees 12
4. References & Additional DOCS..........c.uueiiiiiee e e e e e e e e e e 12

Q) REFEIENCES. ...ttt e e e e e e e e e e e e e e nnnees 12

b) Additional Docs (Risk Management Plan)...........ccooiiiiiiiiiiiiiieeeieeeee e 13



Section 1 | Project Description

1. Project Description

a) Overview

BreadBasket is a consumer-facing web-based application designed to help families and
individuals combat the rising cost of groceries across the United States. Our group
pursued a mission of developing a software product that would help families and
individuals locate the lowest priced items near them from a common group of goods (a

“breadbasket”) based on geographic input in the form of a zip code.

b) Challenge Statement Solution

Our solution to the challenge was to create an application that was easily accessible to
everyday shoppers and laymen who do not necessarily know how to run complex
software products. By focusing on accessibility and our mission from our overview
above, we believe that this consumer application can positively impact society and

combat issues related to hunger, poverty, and inflation.

Feature Functionality Highlight 1 | Home Page

When users first visit BreadBasket, they will see our clean home page with information
about what our app does - comparing grocery prices across multiple stores. If they're not
logged in, they'll see a "Get Started" button. For logged-in users, they can enter their ZIP

code to start comparing prices.

d) Feature Functionality Highlight 2 | Login/Registration

Users can create accounts or login with: Email and password. After logging in, users
have full access to all features. The logins are stored in a backend database using
SQLite.



e) Feature Functionality Highlight 3 | Price Comparison

After entering a ZIP code, users can:

View prices for common grocery items across 5 stores (Kroger, Publix, Aldi,
Walmart, WholeFoods)

Filter items by category or search term

Sort prices by store

See which store has the best price for each item (highlighted)

View unit prices when available

Expand or collapse category sections

Add items to cart with a single click

f) Feature Functionality Highlight 4 | Shopping Cart

The shopping cart feature lets users:

Add items from any store
Adjust quantities
See total price by store

Clear cart or remove individual items

g) Feature Functionality Highlight 5 | Smart Shopping Assistant "Bready"

Our Al assistant "Bready" helps users with:

Recommending grocery items

Creating shopping lists based on recipes
Answering questions about products
Adding items directly to cart

Providing meal planning suggestions

h) Feature Functionality Highlight 6 | Account Settings

Users can:

Update profile information
Change password
Set shopping preferences

View past orders



i)

1)

k)

D

Feature Functionality Highlight 7 | Admin Features

Admins can:
e View and manage user accounts
e Promote/demote other admins
e Review contact form submissions

e Track usage statistics

Architectural Pattern

BreadBasket implements the Client-Server with Model-View-Controller (MVC) pattern for
its architecture. The client is the user interface and the server is the backend that

processes requests, communicates with data sources, and returns results.

System Context Model

Figure 1 is a simplified diagram (in text form) that shows how all components interact
with each other and with external resources. The arrows indicate the flow of data or

requests.

Use Case Model

See Figure 2 for our use case model. The “server” actor functions as an abstraction of all
the parties that directly or indirectly participate in the API calls made from the front end to
the backend (i.e. the grocery stores). This external dependence is a part of our risk
assessment and multiple backup programming modes were implemented to prevent lack
of access. Of note, as our project progressed our basic client server model evolved into

something that resembles a microservice architecture.



Users

(Families, Individuals)

(1) User enters ZIP code and
requests grocery prices

Front-Enll (React)

- Displays groceries
- Collects user input

- Sends HTTP requesis

(2) Sends request to server

Back-End {Node js) (Runs on
Ubuntu OS)
(Controller) . .
API Endpoints (Express.js)

Routes & Controllers.

Application Logic

(3) Checks or updates data

Database (Model)
- Product Listings
- Prices & Store Info

- User Records
(optional)

¥ (4) If outdated data, fetch
new data

Scraper Service
(Puppeteer/Cheerio)
- Runs on Ubuntu OS

- Fetches latest grocery data
- Parses & validates results | () Retrieves grocery data

from external sources

External Groce¥y Websites / APls

- Product listings & prices

- Store APIs

Figure 1 - System Context Model

SYSTEM BACKEND

CLIENT FRONTEND | I I " SERVER
/@\5
retrieve ]
T prices )
@
N create
\ account @
B\
app.py

Figure 2 - Use Case Model



Section 2 | Code Management

2. Code Management

a) Code Management

Code Management was performed primarily through GitHub and with application of Agile
principles including regular scrums. We had a very active Discord server over the course
of this semester-long project and communicated frequently. This communication helped
us to continuously deploy new code and get the whole team involved in end-to-end

testing.

b) Test Plan

e Front-end

o Node package manager testing performed on front end to validate
REACT

o Jest Document Object Model for assertions on DOM form

e Back-end

o In addition to try catch blocks, password hashing through
werkzeug.security, server testing with flask library

o SQLite validation performed by that library and caching inserted as
failsafe

e Harness (end-to-end)

o End to end testing was performed by the whole development team to
validate functionality (in future sprints would like to add a better test suite
here)

o dotenv library applied to ensure safety of APl keys and limit public

exposure

c) Static Code Analysis

As most of our web app is javascript based and the backend fairly straightforward, we
used npm audit for static linting and ran flask in a development environment with all

warning turned on. Results below:



PS Z:\CODE\UF SPRING 2825\CEN3831\BreadBasket\frontend>npm audit
# npm audit report

http-proxy-middleware <=2.8.8

Severity: moderate

http-proxy-middleware allows fixRequestBody to proceed even if bodyParser has failed - https:/
Jgithub. com/advisories/GHSA-9ggqv-wp59-fga2

http-proxy-middleware can call writeBody twice because "else if" is not used - hitps://github.
com/advisories/GHSA-dwww-5pSh-95mh

fix available via “npm audit fix’

nmth-check <2.8.1

Severity:

Inefficient Regular Expression Complexity in nth-check - https://github.com/advisories/GHSA-rp
65-9cf3-cjxr

fix available via “npm audit fix --force’

Will install react-scripts@3.@.1, which is a breaking change

css-select <=3.1.@
Depends on vulnerable versions of mth-check

svgo 1.8.8 - 1.3.2
Depends on vulnerable versions of css-select

@sver/plugin-svgo <=5.5.8
Depends on vulnerable versions of swvgo

@svegr/webpack 4.8.8 - 5.5.8
Depends on vulnerable versions of @swgr/plugin-svgo

react-scripts »>=2.1.4
Depends on vulnerable versions of f@svgr/webpack
Depends on vulnerable versions of resolve-url-loader

postcss <8.4.31

Severity: moderate

PostCs5s line return parsing error - https://github.com/advisories/GHSA-7Th5-64p2-3v2]
fix available via “npm audit fix --force’

Will install react-scripts@3.@.1, which is a breaking change

resolve-url-loader 8.8.1-experiment-postcss || 3.8.8-alpha.1 - 4.8.8
Depends on wvulnerable versions of postcss
vulnerabilities (3 moderate, 6 )

To address issues that do not require attention, run:
npm audit fix

Figure 3 - Static Code Analysis Report




Section 3 | Technical Details

3. Technical Details

a) Technical Details 1 | Backend

Flask-based RESTful APl handling user authentication and data processing
SQLite database for user data, contact submissions, and admin management
Web scraping implementation (playwright) for store price collection:

Kroger API integration in kroger.py

Publix scraper using BeautifulSoup and requests in publix_scraper.py

Aldi scraper implementation in aldi_scraper.py

JWT-based authentication with role-based access control

b) Technical Details 2 | Frontend

Built with React.js for a responsive application
State management using React hooks (useState, useEffect) and local storage
React Router for navigation between different views (Home, Results, Contact,
Admin, Login)
CSS for styling with responsive design considerations
APl integration with backend services using fetch API
Al Assistant (Bready)
o OpenAl API integration for language processing
o Custom prompt engineering to create the "Bready" assistant
o Function calling implementation for cart management

o Context-aware conversation history tracking

c) Installation Instructions

1

2
3
4.
5
6

““"git clone https://qgithub.com/JacksonSchreiber/BreadBasket.qit™ ™

"cd backend && pip install -r requirements.txt™"
cd ..ffrontend && npm install™™”

~/BreadBasket/frontend " 'npm run start™™

n four I rminals and chan i r ~/BreadBask ken
. ALL TERMINALS: "python3 ™


https://github.com/JacksonSchreiber/BreadBasket.git

7. List of servers to start (one in each shell, app.py first): " “app.py™™

“““aldi_scraper.py’ ", “publix_scraper.py ", “kroger.py
*Make sure to read below on API Keys before starting app*

d) Login and Access Credentials / API Keys

e Admin Username: asdfasdfasd, Admin Password: asdfasdfasd
e Create afile title “.env” in both the backend directory and the frontend directory.

e Create or update backend file “api_secrets.py”

=sk-proj-vEUfrh-ieYNcUdcNEbOOIDwWIYIXXah9tSAusV0OCSzbvn3W30X
UsayJglp-YPOLWHAamghOWfPoT3BlbkFJyHknwsVuVO9H0axw341j0DAUpOsRYeguzx1U cVm
0QZgN TNdDcdiKee5Cb 1 LGi9mSDQ5vskA

=development

=appP.pPy
=1

=sqglite:///shopping assistant.db

BreadBasket/backend/.env

=http://127.0.0.1:5000/
=sk-proj-vEUfrh-i1eYNcUdcNEbOOIDwIYIXXah9tSAusV0C
Szbvn3W30XUsayJglp-YP6LWHAamghOWfPoT3BlbkFJIJyHknwsVuVI9HOaxw341j0DAUpOsRYe
guzxlU cVmOQZgN TNdDcdiKee5Cb 1 LGi9mSDQ5vskA

BreadBasket/frontend/.env

243034246a’7¢ ]2424b5a70524e2£5771706d454854

34764d6c533555614a77492

BreadBasket/backend/api_secrets.py




Figure 4 - End-to-End Technical Overview

10



Section 4 | Risk Management

4. Risk Management and Software Quality Attributes

a) Risk Management

Our risk management plan was two fold - focusing on end user misuse or malintent and
server side actors (ie the grocery stores) potentially changing end points or API keys.

Our full risk management plan is appended at the end of our report.

b) Software Quality Attributes
e Usability

o Our frontend was designed to be very user friendly and easy to navigate.
Given that the servers are up and running, front end usability is great.
e Functionality
o Our application is fairly straightforward and pulls prices as requested.
e Performance
o Initially a problem with some scraping methods, the inclusion of a caching
library has resulted in our prices being generated quickly.
e Reliability
o Our reliability and error / exception recovery are handled well in the
frontend, however we could improve in the backend (server crashing)
e Efficiency
o While caching helps, more optimization is needed for full deployment.
e Flexibility
o The frontend is flexible in that there are no “dead-end” routes for the user.
e Security
o Our environment, api_secrets, and user hashing guarantees security.
e Interoperability
o On desktop the app is easy to deploy, mobile requires more work.
e Testability
o Frontend and Backend are good, end-to-end could improve.
e Availability

o Publicly available on GitHub now!

11



References & Additional Docs

4. References & Additional Docs

a) References

https://www.ibm.com/docs/en/rational-soft-arch/9.6.1?topic=diagrams-use-case

o IBM Use Case Model and Diagrams
https://platform.openai.com/docs
o OpenAl. OpenAl APl Documentation.

https://www.reactjs.org/docs/getting-started.html

o ReactdS. React Documentation.

https://www.flask.palletsprojects.com/

o Flask. Flask Documentation

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

o BeautifulSoup. Web Scraping Documentation.

https://playwright.dev/

o Playwright. Browser Automation Framework.

h J/www.sqlite.org/index.html
o SQLite. SQLite Home Page.
h : i.org/proj hon- nv

o dotenv. Managing Environment Variables in Python.

https://www.cleanpng.com/
Logos

b) Additional Docs (Risk Management Plan)

Risk Probability Impact Mitigation Strategy

Website Blocking High Catastrophic Use rotating IPs,

Scrapers user-agent switching,
and prioritize APIs

API Limitations Medium Serious Implement caching and
use rate- limiting

12



https://www.ibm.com/docs/en/rational-soft-arch/9.6.1?topic=diagrams-use-case
https://platform.openai.com/docs
https://www.reactjs.org/docs/getting-started.html
https://www.flask.palletsprojects.com/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://playwright.dev/
https://www.sqlite.org/index.html
https://pypi.org/project/python-dotenv/
https://www.cleanpng.com/

strategies

Data Accuracy Issues High Serious Validate extracted data
with multiple sources
Performance Issues Medium Serious Optimize scraper and
use asynchronous
Compliance & Legal Medium Catastrophic Check terms of Service
Issues and seek store
permissions
Requirement Changes | Medium Serious Maintain clear project
scope and update
changes
Website Blocking High Catastrophic Use rotating IPs,
Scrapers user-agent switching,
and prioritize APIs
API Limitations Medium Serious Implement caching and
use rate- limiting
strategies
Data Accuracy Issues High Serious Validate extracted data
with multiple sources
Performance Issues Medium Serious Optimize scraper and
use asynchronous
Compliance & Legal Medium Catastrophic Check terms of Service
Issues and seek store
permissions
Requirement Changes Medium Serious Maintain clear project

scope and update

13




	Module 15 | Project Submission and Documentation Report 
	Table of Contents 
	Section 1 | Project Description 
	1. Project Description 
	a)​Overview 
	b)​Challenge Statement Solution 
	c)​Feature Functionality Highlight 1 | Home Page 
	d)​Feature Functionality Highlight 2 | Login/Registration 
	e)​Feature Functionality Highlight 3 | Price Comparison 
	f)​Feature Functionality Highlight 4 | Shopping Cart 
	g)​Feature Functionality Highlight 5 | Smart Shopping Assistant "Bready" 
	h)​Feature Functionality Highlight 6 | Account Settings 
	i)​Feature Functionality Highlight 7 | Admin Features 
	j)​Architectural Pattern 
	k)​System Context Model 
	l)​Use Case Model 


	Section 2 | Code Management 
	2. Code Management 
	a)​Code Management 
	b)​Test Plan 
	c)​Static Code Analysis 


	Section 3 | Technical Details 
	3. Technical Details 
	a)​Technical Details 1 | Backend 
	b)​Technical Details 2 | Frontend 
	c)​Installation Instructions 
	d)​Login and Access Credentials / API Keys 


	Section 4 | Risk Management 
	4. Risk Management and Software Quality Attributes 
	a)​Risk Management 
	b)​Software Quality Attributes 


	References & Additional Docs 
	4. References & Additional Docs 
	a)​References 
	b)​Additional Docs (Risk Management Plan) 



