

Module 15 | Project Submission and

Documentation Report
CEN3031 Group 12 - Bag Boys

Project Title: BreadBasket

Github URL: https://github.com/JacksonSchreiber/BreadBasket

Team Members: Ahmed Eltabbakh, Kyle Miller, Jackson Schreiber,

Yaroslav Voryk

https://github.com/JacksonSchreiber/BreadBasket

Table of Contents

Table of Contents...1
Section 1 | Project Description...2

1. Project Description...2
a) Overview..2
b) Challenge Statement Solution... 2
c) Feature Functionality Highlight 1 | Home Page... 2
d) Feature Functionality Highlight 2 | Login/Registration... 2
e) Feature Functionality Highlight 3 | Price Comparison..3
f) Feature Functionality Highlight 4 | Shopping Cart.. 3
g) Feature Functionality Highlight 5 | Smart Shopping Assistant "Bready"........................3
h) Feature Functionality Highlight 6 | Account Settings... 3
i) Feature Functionality Highlight 7 | Admin Features.. 4
j) Architectural Pattern... 4
k) System Context Model...4
l) Use Case Model... 4

Section 2 | Code Management..6
2. Code Management.. 6

a) Code Management.. 6
b) Test Plan..6
c) Static Code Analysis..6

Section 3 | Technical Details...8
3. Technical Details..8

a) Technical Details 1 | Backend..8
b) Technical Details 2 | Frontend... 8
c) Installation Instructions.. 8
d) Login and Access Credentials / API Keys... 9

Section 4 | Risk Management... 11
4. Risk Management and Software Quality Attributes... 11

a) Risk Management.. 11
b) Software Quality Attributes.. 11

References & Additional Docs... 12
4. References & Additional Docs... 12

a) References.. 12
b) Additional Docs (Risk Management Plan)... 13

1

Section 1 | Project Description

1. Project Description

a) Overview

BreadBasket is a consumer-facing web-based application designed to help families and

individuals combat the rising cost of groceries across the United States. Our group

pursued a mission of developing a software product that would help families and

individuals locate the lowest priced items near them from a common group of goods (a

“breadbasket”) based on geographic input in the form of a zip code.

b) Challenge Statement Solution

Our solution to the challenge was to create an application that was easily accessible to

everyday shoppers and laymen who do not necessarily know how to run complex

software products. By focusing on accessibility and our mission from our overview

above, we believe that this consumer application can positively impact society and

combat issues related to hunger, poverty, and inflation.

c) Feature Functionality Highlight 1 | Home Page

When users first visit BreadBasket, they will see our clean home page with information

about what our app does - comparing grocery prices across multiple stores. If they're not

logged in, they'll see a "Get Started" button. For logged-in users, they can enter their ZIP

code to start comparing prices.

d) Feature Functionality Highlight 2 | Login/Registration

Users can create accounts or login with: Email and password. After logging in, users

have full access to all features. The logins are stored in a backend database using

SQLite.

2

e) Feature Functionality Highlight 3 | Price Comparison

After entering a ZIP code, users can:

● View prices for common grocery items across 5 stores (Kroger, Publix, Aldi,

Walmart, WholeFoods)

● Filter items by category or search term

● Sort prices by store

● See which store has the best price for each item (highlighted)

● View unit prices when available

● Expand or collapse category sections

● Add items to cart with a single click

f) Feature Functionality Highlight 4 | Shopping Cart

The shopping cart feature lets users:

● Add items from any store

● Adjust quantities

● See total price by store

● Clear cart or remove individual items

g) Feature Functionality Highlight 5 | Smart Shopping Assistant "Bready"

Our AI assistant "Bready" helps users with:

● Recommending grocery items

● Creating shopping lists based on recipes

● Answering questions about products

● Adding items directly to cart

● Providing meal planning suggestions

h) Feature Functionality Highlight 6 | Account Settings

Users can:

● Update profile information

● Change password

● Set shopping preferences

● View past orders

3

i) Feature Functionality Highlight 7 | Admin Features

Admins can:

● View and manage user accounts

● Promote/demote other admins

● Review contact form submissions

● Track usage statistics

j) Architectural Pattern

BreadBasket implements the Client-Server with Model-View-Controller (MVC) pattern for

its architecture. The client is the user interface and the server is the backend that

processes requests, communicates with data sources, and returns results.

k) System Context Model

Figure 1 is a simplified diagram (in text form) that shows how all components interact

with each other and with external resources. The arrows indicate the flow of data or

requests.

l) Use Case Model

See Figure 2 for our use case model. The “server” actor functions as an abstraction of all

the parties that directly or indirectly participate in the API calls made from the front end to

the backend (i.e. the grocery stores). This external dependence is a part of our risk

assessment and multiple backup programming modes were implemented to prevent lack

of access. Of note, as our project progressed our basic client server model evolved into

something that resembles a microservice architecture.

4

Figure 1 - System Context Model

Figure 2 - Use Case Model

5

Section 2 | Code Management

2. Code Management

a) Code Management

Code Management was performed primarily through GitHub and with application of Agile

principles including regular scrums. We had a very active Discord server over the course

of this semester-long project and communicated frequently. This communication helped

us to continuously deploy new code and get the whole team involved in end-to-end

testing.

b) Test Plan

● Front-end

○ Node package manager testing performed on front end to validate

REACT

○ Jest Document Object Model for assertions on DOM form

● Back-end

○ In addition to try catch blocks, password hashing through

werkzeug.security, server testing with flask library

○ SQLite validation performed by that library and caching inserted as

failsafe

● Harness (end-to-end)

○ End to end testing was performed by the whole development team to

validate functionality (in future sprints would like to add a better test suite

here)

○ dotenv library applied to ensure safety of API keys and limit public

exposure

c) Static Code Analysis

As most of our web app is javascript based and the backend fairly straightforward, we

used npm audit for static linting and ran flask in a development environment with all

warning turned on. Results below:

6

Figure 3 - Static Code Analysis Report

7

Section 3 | Technical Details

3. Technical Details

a) Technical Details 1 | Backend

● Flask-based RESTful API handling user authentication and data processing

● SQLite database for user data, contact submissions, and admin management

● Web scraping implementation (playwright) for store price collection:

● Kroger API integration in kroger.py

● Publix scraper using BeautifulSoup and requests in publix_scraper.py

● Aldi scraper implementation in aldi_scraper.py

● JWT-based authentication with role-based access control

b) Technical Details 2 | Frontend

● Built with React.js for a responsive application

● State management using React hooks (useState, useEffect) and local storage

● React Router for navigation between different views (Home, Results, Contact,

Admin, Login)

● CSS for styling with responsive design considerations

● API integration with backend services using fetch API

● AI Assistant (Bready)

○ OpenAI API integration for language processing

○ Custom prompt engineering to create the "Bready" assistant

○ Function calling implementation for cart management

○ Context-aware conversation history tracking

c) Installation Instructions

1. ```git clone https://github.com/JacksonSchreiber/BreadBasket.git```

2. ```cd backend && pip install -r requirements.txt```

3. ```cd ../frontend && npm install```

4. ~/BreadBasket/frontend ```npm run start```

5. Open up four separate terminals and change directory to ~/BreadBasket/backend

6. ALL TERMINALS: ```python3 ```

8

https://github.com/JacksonSchreiber/BreadBasket.git

7. List of servers to start (one in each shell, app.py first): ```app.py```,

```aldi_scraper.py```, ```publix_scraper.py```, ```kroger.py``` 

*Make sure to read below on API Keys before starting app* 

d) Login and Access Credentials / API Keys 

● Admin Username: asdfasdfasd, Admin Password: asdfasdfasd 

● Create a file title “.env” in both the backend directory and the frontend directory. 

● Create or update backend file “api_secrets.py” 

# OpenAI API Configuration 

OPENAI_API_KEY=sk-proj-vEUfrh-ieYNcUdcNEbO0IDwIYIXXah9tSAusV0CSzbvn3W3OX

UsayJglp-YP6LWHAamgh0WfPoT3BlbkFJyHknwsVuV9H0axw341j0DAUpOsRYeguZx1U_cVm

OQZqN_TNdDcdiKee5Cb_1_LGi9mSDQ5vskA 

 

FLASK_ENV=development 

FLASK_APP=app.py 

FLASK_DEBUG=1 

 

# Database Configuration 

DATABASE_URL=sqlite:///shopping_assistant.db 

 
BreadBasket/backend/.env 

 

REACT_APP_API_URL=http://127.0.0.1:5000/ 

REACT_APP_OPENAI_API_KEY=sk-proj-vEUfrh-ieYNcUdcNEbO0IDwIYIXXah9tSAusV0C

Szbvn3W3OXUsayJglp-YP6LWHAamgh0WfPoT3BlbkFJyHknwsVuV9H0axw341j0DAUpOsRYe

guZx1U_cVmOQZqN_TNdDcdiKee5Cb_1_LGi9mSDQ5vskA 

 
BreadBasket/frontend/.env 

 

# Kroger API Creds: 

CLIENT_ID = 

"breadbasket-243261243034246a79762e693372424b5a70524e2f5771706d454854756

4385547777445674f2e3847396f39366a34764d6c533555614a77492e564f36158428656

38524082" 

CLIENT_SECRET = "dXN8ZnQJ02vsck7HuLVKOk6D06ZDMvzLTxlX6W2Y" 

 
BreadBasket/backend/api_secrets.py 

9 



 

 

 

Figure 4 - End-to-End Technical Overview 

10 



Section 4 | Risk Management 

4. Risk Management and Software Quality Attributes 

a) Risk Management 

Our risk management plan was two fold - focusing on end user misuse or malintent and 

server side actors (ie the grocery stores) potentially changing end points or API keys. 

Our full risk management plan is appended at the end of our report. 

b) Software Quality Attributes 

● Usability 

○ Our frontend was designed to be very user friendly and easy to navigate. 

Given that the servers are up and running, front end usability is great. 

● Functionality 

○ Our application is fairly straightforward and pulls prices as requested. 

● Performance 

○ Initially a problem with some scraping methods, the inclusion of a caching 

library has resulted in our prices being generated quickly. 

● Reliability 

○ Our reliability and error / exception recovery are handled well in the 

frontend, however we could improve in the backend (server crashing) 

● Efficiency 

○ While caching helps, more optimization is needed for full deployment. 

● Flexibility 

○ The frontend is flexible in that there are no “dead-end” routes for the user. 

● Security 

○ Our environment, api_secrets, and user hashing guarantees security. 

● Interoperability 

○ On desktop the app is easy to deploy, mobile requires more work.  

● Testability 

○ Frontend and Backend are good, end-to-end could improve. 

● Availability 

○ Publicly available on GitHub now!  

11 



References & Additional Docs 

4. References & Additional Docs 

a) References 

● https://www.ibm.com/docs/en/rational-soft-arch/9.6.1?topic=diagrams-use-case 

○ IBM Use Case Model and Diagrams 

● https://platform.openai.com/docs 

○ OpenAI. OpenAI API Documentation. 

● https://www.reactjs.org/docs/getting-started.html  

○ ReactJS. React Documentation. 

● https://www.flask.palletsprojects.com/  

○ Flask. Flask Documentation 

● https://www.crummy.com/software/BeautifulSoup/bs4/doc/  

○ BeautifulSoup. Web Scraping Documentation. 

● https://playwright.dev/ 

○ Playwright. Browser Automation Framework. 

● https://www.sqlite.org/index.html  

○ SQLite. SQLite Home Page. 

● https://pypi.org/project/python-dotenv/ 

○ dotenv. Managing Environment Variables in Python. 

● https://www.cleanpng.com/  

            Logos 

 

 

b) Additional Docs (Risk Management Plan) 

Risk Probability Impact Mitigation Strategy 

Website Blocking 
Scrapers 

High Catastrophic Use rotating IPs, 
user-agent switching, 
and prioritize APIs 

API Limitations Medium Serious Implement caching and 
use rate- limiting 

12 

https://www.ibm.com/docs/en/rational-soft-arch/9.6.1?topic=diagrams-use-case
https://platform.openai.com/docs
https://www.reactjs.org/docs/getting-started.html
https://www.flask.palletsprojects.com/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://playwright.dev/
https://www.sqlite.org/index.html
https://pypi.org/project/python-dotenv/
https://www.cleanpng.com/


strategies 

Data Accuracy Issues High Serious Validate extracted data 
with multiple sources 

Performance Issues Medium Serious Optimize scraper and 
use asynchronous  

Compliance & Legal 
Issues 

Medium Catastrophic Check terms of Service  
and seek store 
permissions 

Requirement Changes Medium Serious Maintain clear project 
scope and update 
changes 

 

Website Blocking 
Scrapers 

High Catastrophic Use rotating IPs, 
user-agent switching, 
and prioritize APIs 

API Limitations Medium Serious Implement caching and 
use rate- limiting 
strategies 

Data Accuracy Issues High Serious Validate extracted data 
with multiple sources 

Performance Issues Medium Serious Optimize scraper and 
use asynchronous  

Compliance & Legal 
Issues 

Medium Catastrophic Check terms of Service  
and seek store 
permissions 

Requirement Changes Medium Serious Maintain clear project 
scope and update  

 

13 


	Module 15 | Project Submission and Documentation Report 
	Table of Contents 
	Section 1 | Project Description 
	1. Project Description 
	a)Overview 
	b)Challenge Statement Solution 
	c)Feature Functionality Highlight 1 | Home Page 
	d)Feature Functionality Highlight 2 | Login/Registration 
	e)Feature Functionality Highlight 3 | Price Comparison 
	f)Feature Functionality Highlight 4 | Shopping Cart 
	g)Feature Functionality Highlight 5 | Smart Shopping Assistant "Bready" 
	h)Feature Functionality Highlight 6 | Account Settings 
	i)Feature Functionality Highlight 7 | Admin Features 
	j)Architectural Pattern 
	k)System Context Model 
	l)Use Case Model 


	Section 2 | Code Management 
	2. Code Management 
	a)Code Management 
	b)Test Plan 
	c)Static Code Analysis 


	Section 3 | Technical Details 
	3. Technical Details 
	a)Technical Details 1 | Backend 
	b)Technical Details 2 | Frontend 
	c)Installation Instructions 
	d)Login and Access Credentials / API Keys 


	Section 4 | Risk Management 
	4. Risk Management and Software Quality Attributes 
	a)Risk Management 
	b)Software Quality Attributes 


	References & Additional Docs 
	4. References & Additional Docs 
	a)References 
	b)Additional Docs (Risk Management Plan) 



